Introduction: Recent studies have shown that acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) may serve as important diagnostic and therapeutic targets in sepsis. Since polymorphonuclear neutrophils (PMNs) play a pivotal role in the early phase of sepsis, we evaluated the potential therapeutic effects of cholinesterase inhibitors on PMN functions during cecal ligation and puncture- (CLP-) induced sepsis and investigated the roles of AChE and BChE as inflammatory markers under standardized experimental conditions.
Methods: Sham surgery or CLP was performed in male Wistar rats (n = 60). Animals were randomized into four groups: physostigmine, 100 μg/kg; neostigmine, 75 μg/kg; 0.9% saline (control group); and sham group, each applied four times over 24 h. The levels of reactive oxygen species (ROS) production and CD11b/CD62l expression were quantified by flow cytometry at t = 0, 6, 15, 20, and 24 h. Blood gas analysis as well as AChE and BChE activity levels was measured by validated point-of-care measurements. Clinical scores and survival times were determined.
Results: CLP induced a significant increase in ROS production and CD11b upregulation by rat PMNs. Treatment with physostigmine or neostigmine significantly reduced ROS production and CD11b upregulation by PMNs 20 h after CLP induction. In physostigmine-treated animals, survival times were significantly improved compared to the control animals, but not in neostigmine-treated animals. While AChE activity significantly decreased in the control animals at t > 6 h, AChE activity did not change in the sham group. BChE activity decreased at t > 20 h in the control animals.
Conclusion: While AChE activity may serve as an acute inflammatory marker, BChE activity shows a delayed decrease. Administration of centrally acting physostigmine in CLP-induced sepsis in rats has protective effects on PMN functions and improves survival times, which may be of interest in clinical practice.