Pathological stimulus-triggered differentiation of cardiac fibroblasts plays a major role in the development of myocardial fibrosis. Aldehyde dehydrogenase 2 (ALDH2) was reported to exert a protective role in cardiovascular disease, and whether ALDH2 is involved in cardiac fibroblast differentiation remains unclear. In this study, we used transforming growth factor-β1 (TGF-β1) to induce the differentiation of human cardiac fibroblasts (HCFs) and adopted ALDH2 activator Alda-1 to verify the influence of ALDH2 on HCF differentiation. Results showed that ALDH2 activity was obviously impaired when treating HCFs with TGF-β1. Activation of ALDH2 with Alda-1 inhibited the transformation of HCFs into myofibroblasts, demonstrated by the decreased smooth muscle actin (α-actin) and periostin expression, reduced HCF-derived myofibroblast proliferation, collagen production, and contractility. Moreover, application of Smad2/3 inhibitor alleviated TGF-β1-induced HCF differentiation and improved ALDH2 activity, which was reversed by the application of ALDH2 inhibitor daidzin. Finally, Alda-1-induced HCF alterations alleviated neonatal rat cardiomyocyte hypertrophy, supported by the immunostaining of α-actin. To summarize, activation of ALDH2 enzymatic activity inhibited the differentiation of cardiac fibroblasts via the TGF-β1/Smad signaling pathway, which might be a promising strategy to relieve myocardial fibrosis of various causes.