This mini-review highlights the potential of benchtop nuclear magnetic resonance (NMR) for the monitoring of bioprocesses. It describes recent perspectives opened by the reduced size of devices in relaxometry, magnetic resonance imaging and NMR spectroscopy. In particular, the recent emergence of the benchtop NMR spectroscopy gives access to many applications thanks to the implementation of advanced experiments.
Benchtop NMR devices are transportable, convenient, and affordable, unlike high-field devices based on superconducting magnets. Such devices have opened numerous applications across a broad variety of scientific areas. This minireview focuses on the usefulness of benchtop nuclear magnetic resonance (NMR) for the monitoring of bioprocesses, highlighting new perspectives opened by the reduced size of devices in relaxometry, magnetic resonance imaging, and NMR spectroscopy. Using benchtop NMR in bioprocesses is not exempt of limitations-especially the loss of sensitivity and resolution arising from the use of a low magnetic field-and which are even further exacerbated by the sample complexity. Still, several studies have shown the efficiency of benchtop NMR in being a noninvasive probe to monitor the evolution of biological samples. If benchtop relaxometry and imaging have been developed for decades and have shown their capacity in monitoring such processes, the more recent emergence of the benchtop NMR spectroscopy gives a breath of fresh air for many applications and benefits from recent research led by spectroscopy specialists, which are adapted on these new devices, from nonconventional pulse sequences to advanced data processing. There is no doubt that these recent devices are powerful tools that will open numerous perspectives for the real-time study of bioprocesses in the coming years.
Keywords: benchtop; bioprocesses; magnetic resonance imaging; monitoring; nuclear magnetic resonance; relaxometry; spectroscopy.
© 2018 John Wiley & Sons, Ltd.