Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising cardiac safety platform, demonstrated by numerous validation studies using drugs with known cardiac adverse effects in humans. However, the challenge remains to implement hiPSC-CMs into cardiac de-risking of new chemical entities (NCEs) during preclinical drug development. Here, we used the calcium transient screening assay in hiPSC-CMs to develop a hazard score system for cardiac electrical liabilities. Tolerance interval calculations and evaluation of different classes of cardio-active drugs enabled us to develop a weighted scoring matrix. This approach allowed the translation of various pharmacological effects in hiPSC-CMs into a single hazard label (no, low, high, or very high hazard). Evaluation of 587 internal NCEs and good translation to ex vivo and in vivo models for a subset of these NCEs highlight the value of the cardiac hazard scoring in facilitating the selection of compounds during early drug safety screening.
Keywords: arrhythmia; cardiac hazard; cardiac safety; cardiomyocytes; drug discovery and development; drug screening; hERG; pharmacology; stem cells; torsade de pointes.
Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.