High-throughput drug sensitivity testing provides a powerful phenotypic profiling approach to identify effective drug candidates for individual cell lines or patient-derived samples. Here, we describe an experimental-computational pipeline, named target addiction scoring (TAS), which mathematically transforms the drug response profiles into target addiction signatures, and thereby provides a ranking of potential therapeutic targets according to their functional importance in a particular cancer sample. The TAS pipeline makes use of drug polypharmacology to integrate the drug sensitivity and selectivity profiles through systems-wide interconnection networks between drugs and their targets, including both primary protein targets as well as secondary off-targets. We show how the TAS pipeline enables one to identify not only single-target addictions but also combinatorial coaddictions among targets that often underlie synergistic drug combinations.
Keywords: Drug combinations; Drug polypharmacology; Drug sensitivity testing; Drug–target interactions; Precision oncology; Target addictions; Target deconvolution.