Objective: The network of interactions between different organs is impaired in liver cirrhosis. Liver cirrhosis is associated with multi-system involvement, which eventually leads to multiple organ failure. This process is accelerated by a precipitating factor such as bacterial infection, which leads to respiratory distress, circulatory shock, neural dysfunction and very high mortality. Cirrhotic patients often have blunted respiratory sinus arrhythmia and impaired cardio-respiratory variability. Fractal-like mechanical ventilation is reported to enhance respiratory sinus arrhythmia and attenuate respiratory distress in experimental models. In the present study we hypothesise that fractal-like mechanical ventilation may improve the outcome of cirrhotic rats with multiple organ failure.
Approach: Cirrhosis was induced by chronic biliary obstruction in rats. Acute multiple organ failure was induced by intraperitoneal injection of bacterial endotoxin in cirrhotic rats. The effect of conventional mechanical ventilation (with constant tidal volume and respiratory rate) or fractal-like ventilation (with the same average but variable tidal volume and respiratory rate) were assessed on vital signs, oxygen saturation and plasma alanine aminotransferase in anaesthetised cirrhotic rats.
Main results: We demonstrated that fractal-like mechanical ventilation was accompanied by improved oxygen saturation, reduced heart rate and decreased liver injury following injection of bacterial endotoxin. Moreover, variable mechanical ventilation in cirrhotic rats reduced mortality and prevented a fall in short-term heart rate variability following endotoxin challenge in comparison with rats with constant mechanical ventilation.
Significance: We suggest further investigations into the beneficial effects of fractal-like ventilation strategy in critically ill patients with liver failure requiring organ support and mechanical ventilation.