Associations of Circulating Protein Levels With Lipid Fractions in the General Population

Arterioscler Thromb Vasc Biol. 2018 Oct;38(10):2505-2518. doi: 10.1161/ATVBAHA.118.311440.

Abstract

Objective- Revealing patterns of associations between circulating protein and lipid levels could improve biological understanding of cardiovascular disease (CVD). In this study, we investigated the associations between proteins related to CVD and triglyceride (TG), total cholesterol, LDL (low-density lipoprotein), and HDL (high-density lipoprotein) cholesterol levels in individuals from the general population. Approach and Results- We measured plasma protein levels using the Olink ProSeek CVD I or II+III arrays and analyzed 57 proteins available in 3 population-based cohorts: EpiHealth (n=2029; 52% women; median age, 61 years), PIVUS (Prospective Study of the Vasculature in Uppsala Seniors; n=790; 51% women; all aged 70 years), and ULSAM (Uppsala Longitudinal Study of Adult Men; n=551; all men aged 77 years). A discovery analysis was performed in EpiHealth in a regression framework (adjusted for sex, age, body mass index, smoking, glucose levels, systolic blood pressure, blood pressure medication, diabetes mellitus medication, and CVD history), and associations with false discovery rate <0.05 were further tested in PIVUS and ULSAM, where a P value of 0.05 was considered a successful replication (validation false discovery rate of 0.1%). We used summary statistics from a genome-wide association study on each protein biomarker (meta-analysis of EpiHealth, PIVUS, ULSAM, and IMPROVE [Carotid Intima-Media Thickness and IMT-Progression as Predictors of Vascular Events in a High-Risk European Population]) and publicly available data from Global Lipids Genetics Consortium to perform Mendelian randomization analyses to address possible causality of protein levels. Of 57 tested proteins, 42 demonstrated an association with at least 1 lipid fraction; 35 were associated with TG, 15 with total cholesterol, 9 with LDL cholesterol, and 24 with HDL cholesterol. Among these associations, we found KIM-1 (kidney injury molecule-1), TNFR (TNF [tumor necrosis factor] receptor) 1 and 2, TRAIL-R2 (TRAIL [TNF-related apoptosis-inducing ligand] receptor 2), and RETN (resistin) to be associated with all 4 lipid fractions. Further, 15 proteins were related to both TG and HDL cholesterol in a consistent and biologically expected manner, that is, higher TG and lower HDL cholesterol or vice versa. Another common pattern of associations was concomitantly higher TG, total cholesterol, and LDL cholesterol, which is associated with higher CVD risk. We did not find evidence of causal links for protein levels. Conclusions- Our comprehensive analysis of plasma proteins and lipid fractions of 3370 individuals from the general population provides new information about lipid metabolism.

Keywords: cholesterol; humans; proteomics; triglycerides.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aged
  • Aged, 80 and over
  • Biomarkers / blood
  • Blood Proteins / genetics
  • Blood Proteins / metabolism*
  • Cholesterol, HDL / blood*
  • Cholesterol, LDL / blood*
  • Female
  • Genotype
  • Humans
  • Lipid Metabolism* / genetics
  • Male
  • Mendelian Randomization Analysis
  • Middle Aged
  • Phenotype
  • Polymorphism, Single Nucleotide
  • Protein Interaction Maps
  • Proteomics
  • Sweden
  • Triglycerides / blood*

Substances

  • Biomarkers
  • Blood Proteins
  • Cholesterol, HDL
  • Cholesterol, LDL
  • Triglycerides