Rivers and reservoirs in urban areas have been associated with environmental quality problems because of the discharge of domestic waste into water bodies. However, the key effects and the extent to which environmental factors can influence the integrated structure and function of urban river ecosystems remain largely unknown. Here, a relationship model involving the species composition of the community and the various environmental factors related to the water and sediment was developed in the dry season (N) and the flood season (F) in both the urban Jiaomen River (JR) and the Baihuitian Reservoir (BR) of Guangzhou City. Canonical correspondence analysis was used to determine the spatiotemporal drivers of the phytoplankton, zooplankton and macrobenthic communities in the river and reservoir systems. The combination of the thermodynamic-oriented ecological indicators and the biodiversity measures reflected the integrated structure and function of the ecosystems. Overall, the plankton community composition was found to be largely determined by the nutrient concentrations and oxygen index, and the development of the macrobenthic communities was mainly restricted by organic matter and heavy metals. Based on the results of the integrated assessment, the structure and function of the JR ecosystem were superior to that of the BR, and the F period displayed healthier results than the N period. Moreover, the structural and functional statuses of the high eco-exergy grade communities (macrobenthic communities) in the ecosystem influenced the regional changes observed in the results of the integrated assessment. The significant seasonal variations in the plankton community affected the seasonal variations in the integrated assessment. The results of this study provide a scientific basis for the management and restoration of regional freshwater environments and ecosystems.
Keywords: biodiversity; community; eco-exergy; sediment; water quality.