As robust osteoinductive cytokines, bone morphogenetic proteins (BMPs) play a significant role in bone tissue engineering. Constituted of two different polypeptides, heterodimeric BMPs are more effective than the homodimers in bone formation. While most studies focused on the murine cell lines, such as murine preosteoblasts MC3T3-E1, the role of heterodimeric BMPs in the osteogenic differentiation of human cells remains uncertain, which hinders their application to practical treatment. In this study, we compared the osteoinductive effects of BMP-2/7 heterodimer in human adipose-derived stem cells (hASCs) with their homodimers BMP-2 and BMP-7, in which MC3T3-E1 cells were utilized as a positive control. The results indicated that BMP-2/7 was not a stronger inducer during the osteogenic differentiation of hASCs as that for MC3T3-E1, and extracellular-signal-regulated kinase signaling played a role in the different effects of BMP-2/7 between hASCs and MC3T3-E1. Our study demonstrates the osteoinductive effects of heterodimeric BMP-2/7 present in a cell-specific pattern and cautions should be taken when applying heterodimeric BMP-2/7 to clinical practice.
Keywords: Bone morphogenetic proteins; MC3T3-E1; heterodimer; human adipose-derived stem cells; osteogenic differentiation.