Bioassay-guided fractionation of the supernatant of the biocontrol strain Bacillus amyloliquefaciens W1 led to the isolation of eight acaricidal cyclodipeptides from the active fractions by column chromatography separation and HPLC purification. The chemical structures of these compounds were identified as cyclo-(Gly-l-Phe), 2, cyclo-(l-Phe- trans-4-OH-l-Pro), 3, cyclo-(Gly-l-Tyr), 4, cyclo-(l-Ala-l-Pro), 5, cyclo-(l-Pro- trans-4-OH-l-Pro), 6, cyclo-(Gly-l-Pro), 7, cyclo-(l-Pro-l-Pro), 8, and cyclo-(l-Tyr- trans-4-OH-l-Pro), 9. Those cyclodipeptides displayed significant acaricidal activities with LC50 values of 13.85-98.24 μM. Cyclo-(l-Tyr- trans-4-OH-l-Pro) (LC50 13.85 μM) was five times more effective than the positive control abamectin (LC50 72.06 μM). The results indicated that the hydroxyl group is an important component. This is the first report on the acaricidal capabilities of cyclodipeptides against Tetranychus urticae. The results revealed that the acaricidal activity of the biocontrol strain B. amyloliquefaciens W1 was dependent on its constituent cyclodipeptides, which have the potential to be safe and environmentally friendly acaricides.
Keywords: acaricidal activity; bioassay-guided fractionation; biological control; cyclic dipeptides; diketopiperazine; two-spotted spider mite.