Hierarchical model-based object localization for auto-contouring in head and neck radiation therapy planning

Proc SPIE Int Soc Opt Eng. 2018 Feb:10578:1057822. doi: 10.1117/12.2294042. Epub 2018 Mar 12.

Abstract

Segmentation of organs at risk (OARs) is a key step during the radiation therapy (RT) treatment planning process. Automatic anatomy recognition (AAR) is a recently developed body-wide multiple object segmentation approach, where segmentation is designed as two dichotomous steps: object recognition (or localization) and object delineation. Recognition is the high-level process of determining the whereabouts of an object, and delineation is the meticulous low-level process of precisely indicating the space occupied by an object. This study focuses on recognition. The purpose of this paper is to introduce new features of the AAR-recognition approach (abbreviated as AAR-R from now on) of combining texture and intensity information into the recognition procedure, using the optimal spanning tree to achieve the optimal hierarchy for recognition to minimize recognition errors, and to illustrate recognition performance by using large-scale testing computed tomography (CT) data sets. The data sets pertain to 216 non-serial (planning) and 82 serial (re-planning) studies of head and neck (H&N) cancer patients undergoing radiation therapy, involving a total of ~2600 object samples. Texture property "maximum probability of occurrence" derived from the co-occurrence matrix was determined to be the best property and is utilized in conjunction with intensity properties in AAR-R. An optimal spanning tree is found in the complete graph whose nodes are individual objects, and then the tree is used as the hierarchy in recognition. Texture information combined with intensity can significantly reduce location error for gland-related objects (parotid and submandibular glands). We also report recognition results by considering image quality, which is a novel concept. AAR-R with new features achieves a location error of less than 4 mm (~1.5 voxels in our studies) for good quality images for both serial and non-serial studies.

Keywords: Automatic anatomy recognition (AAR); computed tomography (CT); head and neck cancer; image quality; optimal spanning tree; radiation therapy; texture.