Wearable alcohol biosensors have emerged as a valuable tool for noninvasive, objective, and continuous monitoring of alcohol consumption. However, to date their research and clinical applications have been limited by several factors including large size, high cost, and social stigma. In contrast, recently developed wrist-worn alcohol biosensors are smaller, less expensive, and may be more acceptable for daily use. However, these devices are at the prototype phase and have just begun to be tested for research applications. In this paper, we describe our experiences with two prototypes of these new wrist-worn alcohol biosensors (i.e., Quantac Tally and BACtrack Skyn) and their associated smartphone applications in both a controlled laboratory setting and the real-world environment. Our preliminary experiences with these devices highlight their advantages including comfort, high participant acceptability, and good compliance. However, there are various limitations that should be addressed prior to future research applications of these biosensors, including large interpersonal variations in transdermal alcohol readings, lack of immediately applicable data analysis/interpretation software, and poor battery life after a few months. More research is also needed to further validate the new biosensors, and investigate individual (e.g., skin thickness, gender differences) and environmental factors (e.g., humidity, temperature) contributing to the variations in transdermal alcohol readings measured by wrist-worn alcohol biosensors.
Keywords: Behavioral monitoring; Heavy drinking; Transdermal alcohol sensor; Wearable alcohol biosensor.
Copyright © 2018 Elsevier Inc. All rights reserved.