Across Species "Natural Ablation" Reveals the Brainstem Source of a Noninvasive Biomarker of Binaural Hearing

J Neurosci. 2018 Oct 3;38(40):8563-8573. doi: 10.1523/JNEUROSCI.1211-18.2018. Epub 2018 Aug 20.

Abstract

The binaural interaction component (BIC) of the auditory brainstem response is a noninvasive electroencephalographic signature of neural processing of binaural sounds. Despite its potential as a clinical biomarker, the neural structures and mechanism that generate the BIC are not known. We explore here the hypothesis that the BIC emerges from excitatory-inhibitory interactions in auditory brainstem neurons. We measured the BIC in response to click stimuli while varying interaural time differences (ITDs) in subjects of either sex from five animal species. Species had head sizes spanning a 3.5-fold range and correspondingly large variations in the sizes of the auditory brainstem nuclei known to process binaural sounds [the medial superior olive (MSO) and the lateral superior olive (LSO)]. The BIC was reliably elicited in all species, including those that have small or inexistent MSOs. In addition, the range of ITDs where BIC was elicited was independent of animal species, suggesting that the BIC is not a reflection of the processing of ITDs per se. Finally, we provide a model of the amplitude and latency of the BIC peak, which is based on excitatory-inhibitory synaptic interactions, without assuming any specific arrangement of delay lines. Our results show that the BIC is preserved across species ranging from mice to humans. We argue that this is the result of generic excitatory-inhibitory synaptic interactions at the level of the LSO, and thus best seen as reflecting the integration of binaural inputs as opposed to their spatial properties.SIGNIFICANCE STATEMENT Noninvasive electrophysiological measures of sensory system activity are critical for the objective clinical diagnosis of human sensory processing deficits. The binaural component of sound-evoked auditory brainstem responses is one such measure of binaural auditory coding fidelity in the early stages of the auditory system. Yet, the precise neurons that lead to this evoked potential are not fully understood. This paper provides a comparative study of this potential in different mammals and shows that it is preserved across species, from mice to men, despite large variations in morphology and neuroanatomy. Our results confirm its relevance to the assessment of binaural hearing integrity in humans and demonstrates how it can be used to bridge the gap between rodent models and humans.

Keywords: auditory; binaural; brainstem; central processing disorder.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Acoustic Stimulation
  • Animals
  • Auditory Perception / physiology*
  • Biomarkers
  • Chinchilla
  • Evoked Potentials, Auditory, Brain Stem*
  • Female
  • Gerbillinae
  • Guinea Pigs
  • Male
  • Mice, Inbred C57BL
  • Models, Neurological
  • Neurons / physiology*
  • Rats, Sprague-Dawley
  • Species Specificity
  • Superior Olivary Complex / physiology*

Substances

  • Biomarkers