Progression of Geographic Atrophy in Age-related Macular Degeneration: AREDS2 Report Number 16

Ophthalmology. 2018 Dec;125(12):1913-1928. doi: 10.1016/j.ophtha.2018.05.028. Epub 2018 Jul 27.

Abstract

Purpose: To analyze the prevalence, incidence, and clinical characteristics of eyes with geographic atrophy (GA) in age-related macular degeneration (AMD), including clinical and genetic factors affecting enlargement.

Design: Prospective cohort study within a controlled clinical trial.

Participants: Age-Related Eye Disease Study 2 (AREDS2) participants, aged 50-85 years.

Methods: Baseline and annual stereoscopic color fundus photographs were evaluated for GA presence and area. Analyses included GA prevalence and incidence rates, Kaplan-Meier rates, mixed-model regression, and multivariable analysis of the square root of GA, area adjusted for covariates, including clinical/imaging characteristics and genotype.

Main outcome measures: (1) Presence or development of GA; (2) change in the square root of GA area over time.

Results: At baseline, 517 eyes (6.2%) of 411 participants (9.8%) had pre-existing GA (without neovascular AMD), with the following characteristics: 33% central, 67% noncentral; and the following configurations: 36% small, 26% solid/unifocal, 24% multifocal, 9% horseshoe/ring, and 6% indeterminate. Of the remaining 6530 eyes at risk, 1099 eyes (17.3%) of 883 participants developed incident GA without prior neovascular disease during mean follow-up of 4.4 years. The Kaplan-Meier rate of incident GA was 19% of eyes at 5 years. In eyes with incident GA, 4-year risk of subsequent neovascular AMD was 29%. In eyes with incident noncentral GA, 4-year risk of central involvement was 57%. GA enlargement rate (following square root transformation) was similar in eyes with pre-existing GA (0.29 mm/year; 95% confidence interval 0.27-0.30) and incident GA (0.28 mm/year; 0.27-0.30). In the combined group, GA enlargement was significantly faster with noncentrality, multifocality, intermediate baseline size, and bilateral GA (P < 0.0001 for interaction in each case) but not with AREDS2 treatment assignment (P = 0.33) or smoking status (P = 0.05). Enlargement was significantly faster with ARMS2 risk (P < 0.0001), C3 non-risk (P = 0.0002), and APOE non-risk (P = 0.001) genotypes.

Conclusions: Analyses of AREDS2 data on natural history of GA provide representative data on GA evolution and enlargement. GA enlargement, which was influenced by lesion features, was relentless, resulting in rapid central vision loss. The genetic variants associated with faster enlargement were partially distinct from those associated with risk of incident GA. These findings are relevant to further investigations of GA pathogenesis and clinical trial planning.

Publication types

  • Clinical Trial, Phase III
  • Multicenter Study
  • Randomized Controlled Trial
  • Research Support, N.I.H., Intramural

MeSH terms

  • Aged
  • Aged, 80 and over
  • Disease Progression
  • Docosahexaenoic Acids / therapeutic use
  • Drug Therapy, Combination
  • Eicosapentaenoic Acid / therapeutic use
  • Female
  • Geographic Atrophy / diagnosis*
  • Geographic Atrophy / drug therapy
  • Geographic Atrophy / physiopathology
  • Humans
  • Lutein / therapeutic use
  • Macular Degeneration / diagnosis*
  • Macular Degeneration / drug therapy
  • Macular Degeneration / physiopathology
  • Male
  • Middle Aged
  • Photography / methods
  • Prospective Studies
  • Visual Acuity / physiology
  • Zeaxanthins / therapeutic use

Substances

  • Zeaxanthins
  • Docosahexaenoic Acids
  • Eicosapentaenoic Acid
  • Lutein