Female nude mice (J:NU-Foxn1nu; age, 6 wk) were injected with 1 million MCF7 human breast cancer cells in the fourth mammary fat pads and received a 21-d sustained-release estrogen pellet (0.25 mg) subcutaneously in the dorsum of the neck. All mice were maintained in sterile housing and provided sterile water and irradiated rodent chow. Approximately 6 wk after implantation, 4 of the 30 mice showed clinical signs of depression and dehydration. The 2 animals most severely affected were euthanized and presented for necropsy. The urinary bladders of these animals were distended with variable sized white, opaque uroliths. Urinalysis revealed coccal bacteria, erythrocytes, neutrophils and struvite crystals. Urine cultures from both necropsied animals grew heavy, pure growths of Staphylococcus xylosus. The organism was sensitive to all antibiotics tested except erythromycin (intermediate). Analysis of the uroliths revealed 100% struvite composition. Remaining mice in the study were evaluated clinically for hydration status, the ability to urinate, and the presence of palpable stones in the urinary bladder; one additional mouse had a firm, nonpainful bladder (urolithiasis suspected). Given the sensitivity of the organisms cultured from urine samples, the remaining mice were placed on enrofloxacin in the drinking water (0.5 mg/mL). All remaining mice completed the study without further morbidity or mortality. Previous studies have reported the association of estrogen supplementation with urinary bladder pathology, including infection and urolithiasis. Here we present a case of urolithiasis and cystitis in nude mice receiving estrogen supplementation that was associated with Staphylococcus xylosus, which previously was unreported in this context. When assessing these nude mice for urolithiasis, we found that visualizing the stones through the body wall, bladder palpation, and bladder expression were helpful in identifying affected mice.