A potentiostat circuit for the application of bipolar electrode voltages and detection of bidirectional currents using a microelectrode array is presented. The potentiostat operates as a regulated-cascode amplifier for positive input currents, and as an active-input regulated-cascode mirror for negative input currents. This topology enables constant-potential amperometry and fast-scan cyclic voltammetry (FSCV) at microelectrode arrays for parallel recording of quantal release events, electrode impedance characterization, and high-throughput drug screening. A 64-channel FSCV detector array, fabricated in a 0.5-$\mu$m, 5-V CMOS process, is also demonstrated. Each detector occupies an area of 45 $\mu$m $\times$ 30 $\mu$m and consists of only 14 transistors and a 50-fF integrating capacitor. The system was validated using prerecorded input stimuli from actual FSCV measurements at a carbon-fiber microelectrode.