Purpose: We evaluated genome sequencing (GS) as an alternative to multigene panel sequencing (PS) for genetic testing in dilated cardiomyopathy (DCM).
Methods: Forty-two patients with familial DCM underwent PS and GS, and detection rates of rare single-nucleotide variants and small insertions/deletions in panel genes were compared. Loss-of-function variants in 406 cardiac-enriched genes were evaluated, and an assessment of structural variation was performed.
Results: GS provided broader and more uniform coverage than PS, with high concordance for rare variant detection in panel genes. GS identified all PS-identified pathogenic or likely pathogenic variants as well as two additional likely pathogenic variants: one was missed by PS due to low coverage, the other was a known disease-causing variant in a gene not included on the panel. No loss-of-function variants in the extended gene set met clinical criteria for pathogenicity. One BAG3 structural variant was classified as pathogenic.
Conclusion: Our data support the use of GS for genetic testing in DCM, with high variant detection accuracy and a capacity to identify structural variants. GS provides an opportunity to go beyond suites of established disease genes, but the incremental yield of clinically actionable variants is limited by a paucity of genetic and functional evidence for DCM association.
Keywords: Familial dilated cardiomyopathy; Genetic testing; Molecular diagnosis; Panel sequencing; genome sequencing.