Immune dysregulation has been noted consistently in individuals with autism spectrum disorder (ASD) and their families, including the presence of autoantibodies reactive to fetal brain proteins in nearly a quarter of mothers of children with ASD versus <1% in mothers of typically developing children. Our lab recently identified the peptide epitope sequences on seven antigenic proteins targeted by these maternal autoantibodies. Through immunization with these peptide epitopes, we have successfully created an endogenous, antigen-driven mouse model that ensures a constant exposure to the salient autoantibodies throughout gestation in C57BL/6J mice. This exposure more naturally mimics what is observed in mothers of children with ASD. Male and female offspring were tested using a comprehensive sequence of behavioral assays, as well as measures of health and development highly relevant to ASD. We found that MAR-ASD male and female offspring had significant alterations in development and social interactions during dyadic play. Although 3-chambered social approach was not significantly different, fewer social interactions with an estrous female were noted in the adult male MAR-ASD animals, as well as reduced vocalizations emitted in response to social cues with robust repetitive self-grooming behaviors relative to saline treated controls. The generation of MAR-ASD-specific epitope autoantibodies in female mice prior to breeding created a model that demonstrates for the first time that ASD-specific antigen-induced maternal autoantibodies produced alterations in a constellation of ASD-relevant behaviors.