Objective: Anti-citrullinated protein antibodies (ACPAs) have proven highly useful as biomarkers for rheumatoid arthritis (RA). However, composition and functionality of the associated autoreactive B cell repertoire have not been directly assessed. We aimed to selectively investigate citrullinated autoantigen-specific B cell receptors (BCRs) involved in RA and initiate studies on their pathogenicity.
Methods: Blood samples were obtained from patients in a University of Minnesota cohort with ACPA-positive RA (n = 89). Tetramer sets bearing citrullinated filaggrin peptide cfc1 or citrullinated α-enolase peptide were constructed to specifically capture autoreactive B cells from the unaltered, polyclonal repertoire in RA patients. Citrullinated peptide tetramer-bound B cells were subjected to flow cytometric cell sorting and single-cell IGH, IGK, and IGL gene sequencing for B cell lineage determinations. BCR gene sequences were also expressed as recombinant monoclonal antibodies (mAb) for direct evaluation of citrullinated autoantigen binding and effector functionality.
Results: Using citrullinated peptide tetramer enrichment to investigate single autoreactive blood B cells, we identified biased V-region gene usage and conserved junction arrangements in BCRs from RA patients. Parsimonious clustering of related immunoglobulin gene nucleotide sequences revealed clonal expansions of rare individual B cell clades, in parallel with divergent sequence mutations. Correspondingly, recombinant mAb generated from such BCR lineages demonstrated citrulline-dependent cross-reactivity extending beyond the citrullinated peptides used for B cell capture. A pair of citrullinated autoantigen-specific mAb with cross-reactive binding profiles also promoted arthritis in mice.
Conclusion: Our findings suggest that broad ACPA specificities in RA arise from a restricted repertoire of evolving citrulline-multispecific B cell clades with pathogenic potential.
© 2018, American College of Rheumatology.