The alteration of T790M between 19 del and L858R in NSCLC in the course of EGFR-TKIs therapy: a literature-based pooled analysis

J Thorac Dis. 2018 Apr;10(4):2311-2320. doi: 10.21037/jtd.2018.03.150.

Abstract

Background: Treatment-naive epidermal growth factor receptor (EGFR) T790M mutation is more inclined to coexist with L858R than with 19 del in non-small cell lung cancer (NSCLC) patients. However, EGFR-tyrosine kinase inhibitors (EGFR-TKIs) might alter this status. We sought to compare the prevalence of T790M upon acquired resistance to EGFR-TKIs between 19 del and L858R by assembling all existing data.

Methods: Electronic databases were comprehensively searched for eligible studies. The primary endpoint was the odds ratio (OR) of T790M mutation in NSCLC co-existing with L858R mutation and 19 del upon resistance to first-generation EGFR-TKIs. A random effects model was used. Stratified analysis was performed based on study type (retrospective and prospective), race (Asians and Caucasians) and sample type (tissue and plasma).

Results: A total of 25 studies involving 1,770 patients were included. The overall T790M existent rate was 45.25%. Post-resistance T790M was more frequent in 19 del than in L858R mutated patients (53% vs. 36%; OR 1.87; P<0.001). All outcomes of subgroup and overall analyses were similar. In contrast, we re-analyzed the previous meta-analysis, finding that the pooled rate of pretreatment T790M was 14% and 22% in 19 del and L858R respectively (OR 0.59; P<0.001). The increase of T790M rate was 2.79-fold in 19 del and only 0.63-fold in L858R in the course of EGFR-TKIs therapy.

Conclusions: Opposite to the situation of de novo T790M, it was observed that T790M was more frequent in exon 19 deletion than in L858R among patients with acquired resistance to EGFR-TKIs. The difference in T790M alteration between 19 del and L858R encourages development of detection or treatment strategies for the specific resistance mechanism.

Keywords: L858R; Non-small cell lung cancer (NSCLC); T790M; epidermal growth factor receptor (EGFR); exon 19 deletions.