SUNSET: Stereotactic Radiation for Ultracentral Non-Small-Cell Lung Cancer-A Safety and Efficacy Trial

Clin Lung Cancer. 2018 Jul;19(4):e529-e532. doi: 10.1016/j.cllc.2018.04.001. Epub 2018 Apr 18.

Abstract

Background: Lung stereotactic body radiotherapy (SBRT) is considered a standard curative treatment for medically inoperable early stage non-small-cell lung cancer (NSCLC). Patients with ultracentral tumors (signifying tumors whose planning target volume touches or overlaps the central bronchial tree, esophagus, or pulmonary artery) may be at higher risk of serious toxicities such as bronchial stricture and collapse, esophageal strictures, tracheal-esophageal fistula, and hemorrhage. The primary objective of the study is to determine the maximum tolerated dose of radiotherapy for ultracentral NSCLC.

Methods: This multicenter phase 1 dose-escalation study will use a time-to-event continual reassessment method (TITE-CRM). Accrual will start at level 1 (60 Gy in 8 fractions delivered daily). The model will use all available information from previously accrued patients to assign the highest dose with a predicted risk of grade 3-5 toxicity of 30% or less. All patients with newly diagnosed stage T1-3 N0M0 NSCLC (International Union Against Cancer, 8th edition) with tumor size ≤ 6 cm and meeting the criteria for ultracentral location (ie, tumors whose planning target volume touches or overlaps the central bronchial tree, esophagus, pulmonary vein, or pulmonary artery) will be eligible for this study.

Discussion: It is important to identify a safe dose-fractionation regimen for treating ultracentral tumors with SBRT. In addition, the data from this study may be informative in guiding future studies on the use of SBRT in treating malignancies within the mediastinum-for example, for salvage treatment of mediastinal lymph nodes for recurrent NSCLC or mediastinal oligometastases.

Keywords: Central; Dose-escalation; Hypofractionated; Phase 1/2; SBRT.

Publication types

  • Clinical Trial, Phase I
  • Multicenter Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carcinoma, Non-Small-Cell Lung / pathology
  • Carcinoma, Non-Small-Cell Lung / radiotherapy*
  • Dose Fractionation, Radiation
  • Humans
  • Lung Neoplasms / pathology
  • Lung Neoplasms / radiotherapy*
  • Maximum Tolerated Dose
  • Radiosurgery / methods*
  • Radiotherapy Dosage
  • Research Design