geno2pheno[ngs-freq]: a genotypic interpretation system for identifying viral drug resistance using next-generation sequencing data

Nucleic Acids Res. 2018 Jul 2;46(W1):W271-W277. doi: 10.1093/nar/gky349.

Abstract

Identifying resistance to antiretroviral drugs is crucial for ensuring the successful treatment of patients infected with viruses such as human immunodeficiency virus (HIV) or hepatitis C virus (HCV). In contrast to Sanger sequencing, next-generation sequencing (NGS) can detect resistance mutations in minority populations. Thus, genotypic resistance testing based on NGS data can offer novel, treatment-relevant insights. Since existing web services for analyzing resistance in NGS samples are subject to long processing times and follow strictly rules-based approaches, we developed geno2pheno[ngs-freq], a web service for rapidly identifying drug resistance in HIV-1 and HCV samples. By relying on frequency files that provide the read counts of nucleotides or codons along a viral genome, the time-intensive step of processing raw NGS data is eliminated. Once a frequency file has been uploaded, consensus sequences are generated for a set of user-defined prevalence cutoffs, such that the constructed sequences contain only those nucleotides whose codon prevalence exceeds a given cutoff. After locally aligning the sequences to a set of references, resistance is predicted using the well-established approaches of geno2pheno[resistance] and geno2pheno[hcv]. geno2pheno[ngs-freq] can assist clinical decision making by enabling users to explore resistance in viral populations with different abundances and is freely available at http://ngs.geno2pheno.org.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Drug Resistance, Viral / genetics*
  • Genome, Viral / genetics
  • Genotype
  • HIV Infections / drug therapy*
  • HIV Infections / genetics
  • HIV Infections / virology
  • HIV-1 / genetics*
  • High-Throughput Nucleotide Sequencing
  • Humans
  • Mutation
  • Software*