Femtosecond Time-Resolved Raman Spectroscopy Reveals Structural Evidence for meta Effect in Stilbenols

J Phys Chem A. 2018 May 17;122(19):4601-4608. doi: 10.1021/acs.jpca.7b12339. Epub 2018 May 4.

Abstract

The meta effect in substituted aromatics plays a crucial role in their excited-state photophysical properties. Meta-substituted hydroxyarenes such as naphthols, stilbenols, and chromophoric constituents of green fluorescent proteins show unusual photoacidity and enhanced fluorescence lifetime and quantum yield when compared to their para-derivatives. Variation in the excited state features of the meta-derivatives when compared to the para-derivatives in stilbenols has been attributed to the enhanced torsional barrier for interconversion between the planar and the twisted perpendicular forms. Herein, we employed femtosecond time-resolved Raman spectroscopy to provide the direct structural evidence for the enhanced torsional barrier in meta-stilbenol. The Raman band profiles of the olefinic C═C stretch related to the torsional motion are found to decay with time constants of ∼750 and ∼13 ps in meta-stilbenol and para-stilbenol respectively, unraveling the structural evidence for the observed enhanced photoacidity originating from enhanced rates of excited-state proton transfer. Further, time-resolved fluorescence measurements are performed to elucidate the relaxation pathways of the excited states of the stilbenols.