Spatial Distortion of Vibration Modes via Magnetic Correlation of Impurities

Phys Rev Lett. 2018 Mar 9;120(10):105501. doi: 10.1103/PhysRevLett.120.105501.

Abstract

Long wavelength vibrational modes in the ferromagnetic semiconductor Ga_{0.91}Mn_{0.09}As are investigated using time resolved x-ray diffraction. At room temperature, we measure oscillations in the x-ray diffraction intensity corresponding to coherent vibrational modes with well-defined wavelengths. When the correlation of magnetic impurities sets in, we observe the transition of the lattice into a disordered state that does not support coherent modes at large wavelengths. Our measurements point toward a magnetically induced broadening of long wavelength vibrational modes in momentum space and their quasilocalization in the real space. More specifically, long wavelength vibrational modes cannot be assigned to a single wavelength but rather should be represented as a superposition of plane waves with different wavelengths. Our findings have strong implications for the phonon-related processes, especially carrier-phonon and phonon-phonon scattering, which govern the electrical conductivity and thermal management of semiconductor-based devices.