Antifungal azoles are widely used in medicine, agriculture, and material protection and several antifungal azoles have been found in environmental samples. Although these compounds were designed to inhibit fungal enzymes such as lanosterol-14-demethylase (cytochrome P450 (CYP) 51), it is well established that the inhibitory actions of azoles are not specific for fungal CYP isozymes. We refined a gill filament assay to determine the inhibition of CYP1, measured as reduced 7-ethoxyresorufin-O-deethylase (EROD) activity, in rainbow trout (Oncorhynchus mykiss) gill tissue ex vivo. The advantage of this method is that both induction and inhibition of EROD are performed ex vivo. Among thirteen azoles studied, the five that caused the strongest inhibition of gill EROD activity at a concentration of 5 μM were selected for concentration-response assessment. These compounds (bifonazole, clotrimazole, imazalil, miconazole, and prochloraz) showed IC50 values ranging from 0.1 to 1.5 μM. CYP19 (aromatase) inhibition was measured using microsomes from rainbow trout brains. Concentration-response curves for CYP19 inhibition were determined for letrozole, bifonazole, clotrimazole, imazalil, miconazole and prochloraz, which gave IC50 values ranging from 0.02 to 3.3 μM. It was further found that mixtures of the five most potent azoles reduced both CYP1 and 19 catalytic activity in an additive fashion (IC50 = 0.7 μM and 0.6 μM, in the respective assay). Bifonazole (IC50 = 0.1 μM) is not previously known to inhibit CYP1 activity. The additive inhibition of CYP1 and CYP19 catalytic activity is an important finding of the present study. We conclude that this additive action of azoles could mediate adverse impacts on CYP regulated physiological functions in environmentally exposed fish.
Keywords: Additivity; Aromatase (CYP19); Azole; Cytochrome P450 (CYP) enzyme; Ethoxyresorufin-O-deethylase (EROD); Fish; Inhibition.
Copyright © 2018 Elsevier B.V. All rights reserved.