Cefotaxime is the first-line treatment for meningitis in neonates and young infants. However, limited data on cefotaxime cerebrospinal fluid (CSF) concentrations in neonates and young infants were available. The aim of the present study was to evaluate the penetration of cefotaxime into CSF in neonates and young infants. Blood and CSF samples were collected from neonates and young infants treated with cefotaxime using an opportunistic pharmacokinetic sampling strategy, and concentrations were quantified by high-performance liquid chromatography-tandem mass spectrometry. The analysis was performed using NONMEM and R software. Thirty neonates and young infants (postmenstrual age range, 25.4 to 47.4 weeks) were included. A total of 67 plasma samples and 30 CSF samples were available for analysis. Cefotaxime plasma and CSF concentrations ranged from 2.30 to 175.42 mg/liter and from 0.39 to 25.38 mg/liter, respectively. The median ratio of the CSF concentration to the plasma concentration was 0.28 (range, 0.06 to 0.76). Monte Carlo simulation demonstrated that 88.4% and 63.9% of hypothetical neonates treated with 50 mg/kg of body weight three times a day (TID) would reach the pharmacodynamic target (the percentage of the dosing interval that the free antimicrobial drug concentration remains above the MIC, 70%) using the standard EUCAST MIC susceptibility breakpoints of 2 mg/liter and 4 mg/liter, respectively. The penetration of cefotaxime into the CSF of neonates and young infants was evaluated using an opportunistic sampling approach. A dosage regimen of 50 mg/kg TID could cover the most causative pathogens with MICs of <2 mg/liter. Individual dosage adaptation was required for more resistant bacterial strains, such as Staphylococcus aureus.
Keywords: cefotaxime; cerebrospinal fluid; infants; neonates.
Copyright © 2018 American Society for Microbiology.