Neurons in the paraventricular nucleus of the hypothalamus (PVN) integrate peripheral signals and coordinate responses that maintain numerous homeostatic functions. An excess of glucocorticoids during fetal development results in long-lasting consequences tied to disrupted PVN development. The PVN contains a distinct neuronal population and a threefold greater vascular density than the surrounding brain regions that prepubertally is reduced in offspring exposed to excess glucocorticoids in utero. This study expands the examination of sex-specific nonneuronal PVN composition by examining astrocytes, astrocytic endfeet, and pericytes. Blood-brain barrier (BBB) competency and composition were examined along with depressive-like behavior and hypothalamic-pituitary-adrenal function in male and female mice. For PVN vasculature, female offspring of vehicle (veh)-treated mothers had significantly more astrocytes and pericytes than male offspring from the same litters. Female offspring from dexamethasone (dex)-treated mothers had significantly lower levels of astrocytes than female offspring from veh-treated mothers, whereas male offspring from dex-treated mothers had greater levels of pericytes compared with veh-treated male offspring. Using the tail-suspension test, male and female offspring from dex-treated mothers had significantly shorter latencies to immobility, indicating an increase in depression-like behavior, and showed greater plasma corticosterone after restraint stress, which was significantly greater in female offspring from dex-treated mothers even after recovery. Therefore, in addition to long-term sex differences in cellular components of the BBB in the PVN that were differentially regulated by fetal glucocorticoid exposure, there were behavioral differences observed into early adulthood in a sex-specific manner.
Keywords: HPA-axis; astrocytes; glucocorticoids; paraventricular nucleus of the hypothalamus; pericytes.