Rationale: Cystic fibrosis deaths result primarily from lung function loss, so chronic respiratory therapies, intended to preserve lung function, are cornerstones of cystic fibrosis care. Although treatment-associated reduction in rate of lung function loss should ultimately improve cystic fibrosis survival, no such relationship has been described for any chronic cystic fibrosis therapy. In part, this is because the ages of most rapid lung function decline-early adolescence-precede the median age of cystic fibrosis deaths by more than a decade.
Objectives: To study associations of high-dose ibuprofen treatment with the rate of forced expiratory volume in 1 second decline and mortality among children followed in the Epidemiologic Study of Cystic Fibrosis and subsequently in the U.S. Cystic Fibrosis Foundation Patient Registry.
Methods: We performed a matched cohort study using data from Epidemiologic Study of Cystic Fibrosis. Exposure was defined as high-dose ibuprofen use reported at ≥80% of encounters over 2 years. Unexposed children were matched to exposed children 5:1 using propensity scores on the basis of demographic, clinical, and treatment covariates. The rate of decline of percent predicted forced expiratory volume in 1 second during the 2-year follow-up period was estimated by mixed-effects modeling with random slopes and intercepts. Survival over 16 follow-up years in the U.S. Cystic Fibrosis Foundation Patient Registry was compared between treatment groups by using proportional hazards modeling controlling for matching and covariates.
Results: We included 775 high-dose ibuprofen users and 3,665 nonusers who were well matched on demographic, clinical, and treatment variables. High-dose ibuprofen users declined on average 1.10 percent predicted forced expiratory volume in 1 second/yr (95% confidence interval; 0.51, 1.69) during the 2-year treatment period, whereas nonusers declined at a rate of 1.76% percent predicted forced expiratory volume in 1 second/yr (95% confidence interval; 1.48, 2.04) during the corresponding 2-year period, a 37.5% slower decline among users compared with nonusers (95% confidence interval; 0.4%, 71.3%; P = 0.046). The users had better subsequent survival (P < 0.001): the unadjusted and adjusted hazard ratios for mortality (high-dose ibuprofen/non-high-dose ibuprofen) (95% confidence interval) were 0.75 (0.64, 0.87) and 0.82 (0.69, 0.96).
Conclusions: In a propensity-score matched cohort study of children with cystic fibrosis, we observed an association between high-dose ibuprofen use and both slower lung function decline and improved long-term survival. These results are consistent with the hypothesis that treatment-associated reduction of lung function decline in children with cystic fibrosis leads to improved survival.
Keywords: cystic fibrosis; high-dose ibuprofen; lung disease modification; propensity-score matching; survival.