The cholinergic system in the brain plays crucial roles in regulating sensory and motor functions as well as cognitive behaviors by modulating neuronal activity. Understanding the organization of the cholinergic system requires a complete map of cholinergic neurons and their axon arborizations throughout the entire brain at the level of single neurons. Here, we report a comprehensive whole-brain atlas of the cholinergic system originating from various cortical and subcortical regions of the mouse brain. Using genetically labeled cholinergic neurons together with whole-brain reconstruction of optical images at 2-μm resolution, we obtained quantification of the number and soma volume of cholinergic neurons in 22 brain areas. Furthermore, by reconstructing the complete axonal arbors of fluorescently labeled single neurons from a subregion of the basal forebrain at 1-μm resolution, we found that their projections to the forebrain and midbrain showed neuronal subgroups with distinct projection specificity and diverse arbor distribution within the same projection area. These results suggest the existence of distinct subtypes of cholinergic neurons that serve different regulatory functions in the brain and illustrate the usefulness of complete reconstruction of neuronal distribution and axon projections at the mesoscopic level.
Keywords: basal forebrain; cholinergic neurons; single neuron reconstruction; tomography; whole-brain imaging.