The cerebrocerebellar circuit is a feedback circuit that bidirectionally connects the neocortex and the cerebellum. According to the classic view, the cerebrocerebellar circuit is specifically involved in the functional regulation of the motor areas of the neocortex. In recent years, studies carried out in experimental animals by morphological and physiological methods, and in humans by magnetic resonance imaging, have indicated that the cerebrocerebellar circuit is also involved in the functional regulation of the nonmotor areas of the neocortex, including the prefrontal, associative, sensory and limbic areas. Moreover, a second type of cerebrocerebellar circuit, bidirectionally connecting the hypothalamus and the cerebellum, has been detected, being specifically involved in the regulation of the hypothalamic functions. This review analyzes the morphological features of the centers and pathways of the cerebrocerebellar circuits, paying particular attention to their organization in different channels, which separately connect the cerebellum with the motor areas and nonmotor areas of the neocortex, and with the hypothalamus. Actually, a considerable amount of new data have led, and are leading, to profound changes on the views on the anatomy, physiology, and pathophysiology of the cerebrocerebellar circuits, so much they may be now considered to be essential for the functional regulation of many neocortex areas, perhaps all, as well as of the hypothalamus and of the limbic system. Accordingly, clinical studies have pointed out an involvement of the cerebrocerebellar circuits in the pathophysiology of an increasing number of neuropsychiatric disorders.
Keywords: cerebellar nuclei; cerebrocerebellum; hypothalamus; inferior olivary nucleus; neocortex; postcerebellar nuclei; precerebellar nuclei; red nucleus.
© 2017 Wiley Periodicals, Inc.