Background: Condyloma acuminatum, infected by low-risk human papillomaviruses (e.g., HPV6 and HPV11), is one of the most widespread sexually transmitted diseases. Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 proteins (APOBEC3s, A3s) are cellular cytidine deaminases acting as antiviral factors through hypermutation of viral genome. However, it remains unknown whether A3s results in HPV11 gene mutations and interferon-ω (IFN-ω) exhibits antiviral activities through the A3s system. Here we investigated whether enhanced APOBEC3A (A3A) resulted in the E6 gene mutations and explore the effects of recombinant human interferon-ω (rhIFN-ω) on A3s/E6 expression in HaCaT keratinocytes containing the genome of HPV 11 (HPV11.HaCaT cells).
Methods: A3A-overexpressed HPV11.HaCaT (A3A-HPV11.HaCaT) cells were established by lentiviral infection and verified by immunofluorescence and western-blotting. Cell cycle, E6 gene mutations, APOBEC3s/E6 gene expression and subcellular localization were detected by FACS, 3D-PCR and sequencing, qRT-PCR and immunofluorescence respectively.
Results: The results suggested that A3A-HPV11.HaCaT cells were successfully established. Enhanced A3A induced S-phase arrest, G > A/C > T mutations and obvious reduction of E6 mRNA expression. A3A/A3B mRNA expression was up-regulated at 6 h and 12 h and obvious A3A staining existed throughout HPV11.HaCaT cells after rhIFN-ω treatment. RhIFN-ω could also inhibit mRNA expression of HPV11 E6 significantly.
Conclusions: Enhanced A3A repressed HPV11 E6 expression through gene hypermutation, and rhIFN-ω might be an effective agent against HPV11 infection by up-regulation of A3A.
Keywords: Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3; Condylomata acuminata; Early gene 6; HaCaT keratinocytes; Human papillomavirus 11; Interferon-ω.