What does it take to have a creative mind? Theories of creative cognition assert that the quantity of automatic associations places fundamental constraints on the probability of reaching creative solutions. Due to the difficulties inherent in isolating automated associative responses from cognitive control, the neural basis underlying this faculty remains unknown. Here we acquired fMRI data in an incidental-viewing paradigm in which subjects performed an attention-demanding task whilst viewing task-irrelevant objects. By assigning a standard creativity task on the same objects out of the scanner, as well as a battery of psychometric creativity tests, we could assess whether stimulus-bound neural activity was predictive of state or trait variability in creativity. We found that stimulus-bound responses in superior occipital regions were linearly predictive of trial-by-trial variability in creative performance (state-creativity), and that in more creative individuals (trait-creativity) this response was more strongly expressed in entorhinal cortex. Additionally, the mean response to the onset of objects in parahippocampal gyrus was predictive of trait differences in creativity. This work suggests that, creative individuals are endowed with occipital and medial temporal reflexes that generate a greater fluency in associative representations, making them more accessible for ideation even when no ideation is explicitly called for.