Objectives: Plenty of SH3 (POSH) was originally found to be a key regulator of neuronal apoptosis, axon outgrowth, and neuronal migration. However, the role of POSH in epilepsy has not been reported.
Methods: We investigated the expression of POSH in patients with intractable temporal epilepsy (TLE) and in a kainic acid (KA)-induced mouse model, and then we performed behavioral, electrophysiological and biochemical analyses after the lentivirus (LV)-mediated knockdown or overexpression of POSH in the KA-induced model.
Results: POSH overexpression shortened the latency of seizure onset, increased the frequency of spontaneous recurrent seizures, and increased the frequency of electrical epileptic discharges, while POSH knockdown had contrasting effects. Whole-cell patch-clamp recordings confirmed that POSH overexpression and knockdown were associated with increased and decreased miniature excitatory postsynaptic currents (mEPSCs) and N-methyl-D-aspartate receptor (NMDAR)-mediated currents, respectively. Finally, co-immunoprecipitation showed that POSH and NMDA receptor subunit 1 (NMDAR1) precipitated with each other, and western blot analysis revealed that the surface expression of NMDAR1 was altered in the hippocampus of epileptic mice.
Conclusion: These results show that POSH plays a critical role in the progression of epileptic seizures via NMDAR trafficking and suggest that the protein is a novel target for the treatment of human epilepsy.
Keywords: NMDA receptor; POSH; electrophysiology; epilepsy; lentivirus; patch clamp; therapeutic target.