Metabolite identification is still considered an imposing bottleneck in liquid chromatography mass spectrometry (LC/MS) untargeted metabolomics. The identification workflow usually begins with detecting relevant LC/MS peaks via peak-picking algorithms and retrieving putative identities based on accurate mass searching. However, accurate mass search alone provides poor evidence for metabolite identification. For this reason, computational annotation is used to reveal the underlying metabolites monoisotopic masses, improving putative identification in addition to confirmation with tandem mass spectrometry. This review examines LC/MS data from a computational and analytical perspective, focusing on the occurrence of neutral losses and in-source fragments, to understand the challenges in computational annotation methodologies. Herein, we examine the state-of-the-art strategies for computational annotation including: (i) peak grouping or full scan (MS1) pseudo-spectra extraction, i.e., clustering all mass spectral signals stemming from each metabolite; (ii) annotation using ion adduction and mass distance among ion peaks; (iii) incorporation of biological knowledge such as biotransformations or pathways; (iv) tandem MS data; and (v) metabolite retention time calibration, usually achieved by prediction from molecular descriptors. Advantages and pitfalls of each of these strategies are discussed, as well as expected future trends in computational annotation.