The present study characterized the biological function of the asparaginyl peptidase legumain-1 (LEG-1) of the bovine lungworm Dictyocaulus viviparus and its suitability as a recombinant vaccine against dictyocaulosis. Quantitative real-time PCR and immunoblot analysis revealed LEG-1 to be almost exclusively transcribed and expressed in parasitic lungworm stages. Immunohistochemistry localized the enzyme in the parasite's gut, which was confirmed by immunoblots detecting LEG-1 in the gut as well as male testes. LEG-1 was recombinantly (rLEG-1) expressed in the yeast Pichia pastoris and subsequently analysed in activity assays for its enzyme functions and substrate specificity. For sufficient functionality, rLEG-1 needed trans-activation through D. viviparus cathepsin L-2, indicating a novel mechanism of legumain activation. After trans-activation, rLEG-1 worked best at pH 5·5 and 35-39 °C and cleaved a legumain-specific artificial substrate as well as the natural substrates bovine collagen types I and II. In a clinical vaccination trial, rLEG-1 did not protect against challenge infection. Results of in vitro characterization, transcription pattern and localization enhance the presumption that LEG-1 participates in digestion processes of D. viviparus. Since rLEG-1 needs trans-activation through a cathepsin, it is probably involved in an enzyme cascade and therefore remains interesting as a candidate in a multi-component vaccine.
Keywords: Legumain; bovine lungworm; enzyme activity; hidden antigen; immunization; immunohistochemistry; nematode; vaccination.