A Powerful Framework for Integrating eQTL and GWAS Summary Data

Genetics. 2017 Nov;207(3):893-902. doi: 10.1534/genetics.117.300270. Epub 2017 Sep 11.

Abstract

Two new gene-based association analysis methods, called PrediXcan and TWAS for GWAS individual-level and summary data, respectively, were recently proposed to integrate GWAS with eQTL data, alleviating two common problems in GWAS by boosting statistical power and facilitating biological interpretation of GWAS discoveries. Based on a novel reformulation of PrediXcan and TWAS, we propose a more powerful gene-based association test to integrate single set or multiple sets of eQTL data with GWAS individual-level data or summary statistics. The proposed test was applied to several GWAS datasets, including two lipid summary association datasets based on [Formula: see text] and [Formula: see text] samples, respectively, and uncovered more known or novel trait-associated genes, showcasing much improved performance of our proposed method. The software implementing the proposed method is freely available as an R package.

Keywords: Sum test; aSPU test; statistical power; transcriptome-wide association study (TWAS); weighted association testing.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Genome-Wide Association Study / methods*
  • HapMap Project
  • Humans
  • Quantitative Trait Loci*
  • Software*
  • Transcriptome*