Severe spinal cord injury (SCI) leads to almost complete neural cell loss at the injured site, causing the irreversible disruption of neuronal circuits. The transplantation of neural stem or precursor cells (NS/PCs) has been regarded as potentially effective for SCI treatment because NS/PCs can compensate for the injured sites by differentiating into neurons and glial cells (astrocytes and oligodendrocytes). An understanding of the molecular mechanisms that regulate the proliferation, fate specification and maturation of NS/PCs and their progeny would facilitate the establishment of better therapeutic strategies for regeneration after SCI. In recent years, several studies of SCI animal models have demonstrated that the modulation of specific epigenetic marks by histone modifiers and non-coding RNAs directs the setting of favorable cellular environments that promote the neuronal differentiation of NS/PCs and/or the elongation of the axons of the surviving neurons at the injured sites. In this review, we provide an overview of recent progress in the epigenetic regulation/manipulation of neural cells for the treatment of SCI.
Keywords: Epigenetics; Neural stem/precursor cell; Neuronal regeneration; Spinal cord injury; Transplantation.