Our understanding of the pathophysiologic process of venous ulceration has dramatically increased during the past two decades because of dedicated, venous-specific basic science research. Currently, the mechanisms regulating venous ulceration are a combination of macroscopic and microscopic pathologic processes. Macroscopic alterations refer to pathologic processes related to varicose vein formation, vein wall architecture, and cellular abnormalities that impair venous function. These processes are primarily caused by genetic factors that lead to the destruction of normal vein wall architecture and venous hypertension. Venous hypertension causes a chronic inflammatory response that over time can cause venous ulceration. The inciting inflammatory injury is chronic extravasation of macromolecules and red blood cell degradation products and iron overload. Chronic inflammation causes white blood cell extravasation into the dermis with secretion of numerous proinflammatory cytokines. These cytokines transform the phenotype of fibroblasts to a contractile phenotype that increases tension in the dermis. In addition, iron overload keeps macrophages in an M1 phenotype, which leads to tissue destruction instead of dermal repair. Current surgical and medical therapies are primarily directed at eliminating venous hypertension and promoting venous ulcer wound healing. Despite advances in our understanding of venous ulcer formation and healing, ulcers still take an average of 6 months to heal, and ulcer recurrence rates at 5 years are >58%. To improve the care of patients with venous ulcers, we need to further our understanding of the underlying pathologic events that lead to ulcer formation, prevent healing, and decrease ulcer-free recurrence intervals.
Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.