Objective: To quantify the radiation dose reduction achievable by minimizing z-axis coverage in 320-detector coronary CT angiography (CCTA).
Methods: We retrospectively reviewed 130 CCTAs performed on 320-detector CT that offers up to 16 cm z-axis coverage (adjustable in 2-cm increments), allowing complete coverage of the heart in a single gantry rotation. For each CT, we obtained the radiation dose [CT dose index and dose-length product (DLP)], measured the z-axis field of view and measured the craniocaudal cardiac size (distance from the left main coronary artery to the cardiac apex). We calculated the radiation dose savings achievable by reducing the z-axis coverage to the minimum necessary to cover the heart using 320 × 0.5-mm (maximum 16 cm) and 256 × 0.5-mm (maximum 12.8 cm) detector collimations.
Results: Results are expressed as mean ± standard deviation. The mean craniocaudal cardiac size was 10.5 ± 1.0 cm, with 85% (n = 112) of CCTAs performed with 16 cm of z-axis coverage. The mean DLP was 417.6 ± 182.4 mGy cm, with the mean DLP saving achievable using the minimum z-axis coverage required to completely image the heart being 96.2 ± 47.4 mGy cm, an average dose reduction of 26.9 ± 7.0%. z-axis coverage of ≤12 cm was adequate for 92% and 12.8 cm for 98% of subjects.
Conclusion: Using the minimal z-axis coverage to adequately image the heart is a simple step that can reduce the DLP in 320-detector CCTA by approximately 27%. z-axis coverage of ≤12 cm is adequate for 92%, 12.8 cm for 98% and 14 cm for 100% of patients undergoing CCTA. Advances in knowledge: Reducing z-axis coverage in 320-detector CCTA can reduce DLP by approximately 27%.