Purpose: Respiratory motion-management techniques (MMT) aim to ensure tumor dose coverage while sparing lung tissue. Dynamic treatment-couch tracking of the moving tumor is a promising new MMT and was compared to the internal-target-volume (ITV) concept, the mid-ventilation (MidV) principle and the gating approach in a planning study based on 4D dose calculations.
Methods: For twenty patients with lung lesions, planning target volumes (PTV) were adapted to the MMT and stereotactic body radiotherapy treatments were prepared with the 65%-isodose enclosing the PTV. For tracking, three concepts for target volume definition were considered: Including the gross tumor volume of one phase (single-phase tracking), including deformations between phases (multi-phase tracking) and additionally including tracking latencies of a couch tracking system (reliable couch tracking). The accumulated tumor and lung doses were estimated with 4D dose calculations based on 4D-CT datasets and deformable image registration.
Results: Single-phase tracking showed the lowest ipsilateral lung Dmean (median: 3.3Gy), followed by multi-phase tracking, gating, reliable couch tracking, MidV and ITV concepts (3.6, 3.8, 4.1, 4.3 and 4.8Gy). The 4D dose calculations showed the MidV and single-phase tracking overestimated the target mean dose (-2.3% and -1.3%), while it was slightly underestimated by the other MMT (<+1%).
Conclusion: The ITV concept ensures tumor coverage, but exposes the lung tissue to a higher dose. The MidV, gating and tracking concepts were shown to reduce the lung dose. Neglecting non-translational changes of the tumor in the target volume definition for tracking results in a slightly reduced target coverage. The slightly inferior dose coverage for MidV should be considered when applying this technique clinically.
Keywords: 4D dose calculation; Gating; Lung cancer; Respiratory motion management; Stereotactic body radiation therapy; Tracking.
Copyright © 2017 Elsevier B.V. All rights reserved.