Electrospun polymeric micro/nanofibrous scaffolds have been investigated extensively as drug delivery platforms capable of controlled and sustained release of therapeutic agents in situ. Such scaffolds exhibit excellent physicochemical and biological properties and can encapsulate and release various drugs in a controlled fashion. This article reviews recent advances in the design and manufacture of electrospun scaffolds for long-term drug release, placing particular emphasis on polymer selection, types of incorporated drugs and the latest drug-loading techniques. Finally, applications of such devices in traumatic or disease states requiring effective and sustained drug action are discussed and critically appraised in their biomedical context.
Copyright © 2017 Elsevier Ltd. All rights reserved.