The influence of driver mutations on leukaemic transformation was analysed in 1747 patients with polycythaemia vera or essential thrombocythaemia. With a median follow-up of 7·2 years, 349 patients died and 62 progressed to acute leukaemia or myelodysplastic syndrome. Taking death as a competing risk, CALR genotype was associated with a lower risk of transformation [subdistribution hazard ratio (SHR): 0·13, 95% confidence interval (CI): 0·2-0·9, P = 0·039], whereas JAK2 V617F showed borderline significance for higher risk (SHR: 2·05, 95% CI: 0·9-4·6, P = 0·09). Myelofibrotic transformation increased leukaemic risk, except in CALR-mutated patients. Next generation sequencing of 51 genes at the time of transformation showed additional mutations (median number: 3; range: 1-5) in 25 out of 29 (86%) assessable cases. Mutations (median: 1; range: 1-3) were detected in 67% of paired samples from the chronic phase. Leukaemia appeared in a JAK2 V617F negative clone in 17 (58%) cases, eleven of them being previously JAK2 V617F-positive. JAK2 V617F-mutated leukaemia was significantly associated with complex karyotype and acquisition of TP53 mutations, whereas EZH2 and RUNX1 mutations were more frequent in JAK2 V617F-negative leukaemia. Survival was longer in JAK2 V617F-unmutated leukaemia (343 days vs. 95 days, P = 0·003). In conclusion, CALR genotype is associated with a lower risk of leukaemic transformation. Leukaemia arising in a JAK2 V617F-negative clone is TP53 independent and shows better survival.
Keywords: essential thrombocythaemia; genotype; myeloid leukaemia; polycythaemia vera; prognostic factors.
© 2017 John Wiley & Sons Ltd.