The discrimination of organic and conventional production has been a critical topic of public discussion and constitutes a scientific issue. It remains a challenge to establish a correlation between the agronomical practices and their effects on the composition of olive oils, especially the phenolic composition, since it defines their organoleptic and nutritional value. Thus, a liquid chromatography-electrospray ionization-quadrupole time of flight tandem mass spectrometric method was developed, using target and suspect screening workflows, coupled with advanced chemometrics for the identification of phenolic compounds and the discrimination between organic and conventional extra virgin olive oils. The method was optimized by one-factor design and response surface methodology to derive the optimal conditions of extraction (methanol/water (80:20, v/v), pure methanol, or acetonitrile) and to select the most appropriate internal standard (caffeic acid or syringaldehyde). The results revealed that extraction with methanol/water (80:20, v/v) was the optimum solvent system and syringaldehyde 1.30 mg L-1 was the appropriate internal standard. The proposed method demonstrated low limits of detection in the range of 0.002 (luteolin) to 0.028 (tyrosol) mg kg-1. Then, it was successfully applied in 52 olive oils of Kolovi variety. In total, 13 target and 24 suspect phenolic compounds were identified. Target compounds were quantified with commercially available standards. A novel semi-quantitation strategy, based on chemical similarity, was introduced for the semi-quantification of the identified suspects. Finally, ant colony optimization-random forest model selected luteolin as the only marker responsible for the discrimination, during a 2-year study. Graphical abstract Investigation of the organic and conventional production type of olive oil by LC-QTOF-MS.
Keywords: Ant colony optimization; EVOOs; High - resolution mass spectrometry; Luteolin; Random forest; Semi-quantification method.