Association Between Reward Reactivity and Drug Use Severity is Substance Dependent: Preliminary Evidence From the Human Connectome Project

Nicotine Tob Res. 2017 Jun 1;19(6):710-715. doi: 10.1093/ntr/ntw252.

Abstract

Introduction: Blunted nucleus accumbens (NAc) reactivity to reward is common across drug users. One theory is that individuals abuse substances due to this reward deficit. However, whether there is a relationship between the amount an individual uses and the severity of NAc dysfunction is unclear. It also is possible that such a relationship is substance specific, as nicotine transiently increases reward system sensitivity while alcohol, another commonly used substance, does not. As smokers may use nicotine to bolster NAc reward function, we hypothesize that NAc reactivity to reward will be related to volume of cigarette use, but not volume of alcohol use.

Methods: A functional magnetic resonance imaging incentive-processing task collected by the Human Connectome Project was assessed in a cohort of tobacco smokers who reported smoking between 5-20 cigarettes/day and a cohort of alcohol users who reported drinking 7-25 drinks/wk. Number of cigarettes/day and drinks/wk were correlated with right and left NAc reactivity to the receipt of a monetary reward relative to baseline.

Results: Individuals who smoke greater numbers of cigarettes/day showed lower right NAc reactivity to reward (r = 0.853, p ≤ .001). Left NAc reactivity was not correlated with cigarettes/day. No association was found with drinks/wk.

Conclusions: A negative association was found between NAc reactivity to reward and cigarettes/day, but not alcohol drinks/wk. Given nicotine's unique ability to increase sensitivity to rewards, these findings suggest that individuals who smoke more cigarettes/day may be compensating for more dysfunctional NAc reward reactivity.

Implications: The present study demonstrates that a relationship between NAc reactivity to nondrug reward and volume of substance use is present in nicotine but not alcohol use. While prior work has implicated dysfunctional reward processing in addictions, these findings clarify a substance-specific role that blunted reward function has in determining patterns of use among chronic users.

MeSH terms

  • Adult
  • Alcoholism / physiopathology*
  • Connectome*
  • Female
  • Humans
  • Male
  • Nucleus Accumbens / physiopathology*
  • Reward*
  • Tobacco Use Disorder / physiopathology*