Noise Attenuation Performance of a Helmholtz Resonator Array Consist of Several Periodic Parts

Sensors (Basel). 2017 May 4;17(5):1029. doi: 10.3390/s17051029.

Abstract

The acoustic performance of the ducted Helmholtz resonator (HR) system is analyzed theoretically and numerically. The periodic HR array could provide a wider noise attenuation band due to the coupling of the Bragg reflection and the HR's resonance. However, the transmission loss achieved by a periodic HR array is mainly dependent on the number of HRs, which restricted by the available space in the longitudinal direction of the duct. The full distance along the longitudinal direction of the duct for HR's installation is sometimes unavailable in practical applications. Only several pieces of the duct may be available for the installation. It is therefore that this paper concentrates on the acoustic performance of a HR array consisting of several periodic parts. The transfer matrix method and the Bragg theory are used to investigate wave propagation in the duct. The theoretical prediction results show good agreement with the Finite Element Method (FEM) simulation results. The present study provides a practical way in noise control application of ventilation ductwork system by utilizing the advantage of periodicity with the limitation of available completed installation length for HRs.

Keywords: Helmholtz resonator; finite element method; noise attenuation; periodic structure.