We investigated the role of leaf litter chemistry and richness in affecting testate amoeba communities of tropical rainforest in the Ecuadorian Andes. Litterbags containing leaf litter from four dominating tree species (Clusia sp., Myrcia pubescens, Graffenrieda emarginata, and Cecropia andina) with richness 1, 2, and 4 species were established and exposed in the field for 12 months at 2000 m a.s.l. Chemical elements and compounds of leaf litter were analyzed before exposure. At the end of exposure, microbial biomass and litter mass loss were measured, and living testate amoeba species number, density, biomass, and community composition were determined. In total, 125 testate amoeba species colonized the litter in litterbags. The results suggest that high litter nitrogen and low lignin concentrations are indicators of high litter quality for testate amoebae density and species richness. Their species number and density significantly declined in the order 1 > 4 > 2 leaf litter species and varied with leaf litter chemistry being at a maximum in high-quality single leaf litter species and low in low-quality leaf litter. Further, the addition of litter of high-quality to low-quality litter increased testate amoebae biomass and density; however, the values did not exceed the ones in single high-quality litter treatments. Moreover, the structure of testate amoeba communities varied with litter chemistry, with Fe, Na, lignin, and litter C-to-N ratio being of major importance, and indicating that litter chemistry reflects habitat quality for testate amoebae. Overall, the data show that leaf litter chemistry overrides leaf litter richness in structuring testate amoeba communities.
Keywords: Litter chemistry; Litter quality; Litterbags; Microbial biomass; Protozoa; Testate amoebae.