Phase angle obtained by bioelectrical impedance analysis independently predicts mortality in patients with cirrhosis

World J Hepatol. 2017 Mar 8;9(7):401-408. doi: 10.4254/wjh.v9.i7.401.

Abstract

Aim: To evaluate the prognostic value of the phase angle (PA) obtained from bioelectrical impedance analysis (BIA) for mortality prediction in patients with cirrhosis.

Methods: In total, 134 male cirrhotic patients prospectively completed clinical evaluations and nutritional assessment by BIA to obtain PAs during a 36-mo follow-up period. Mortality risk was analyzed by applying the PA cutoff point recently proposed as a malnutrition marker (PA ≤ 4.9°) in Kaplan-Meier curves and multivariate Cox regression models.

Results: The patients were divided into two groups according to the PA cutoff value (PA > 4.9°, n = 73; PA ≤ 4.9°, n = 61). Weight, height, and body mass index were similar in both groups, but patients with PAs > 4.9° were younger and had higher mid-arm muscle circumference, albumin, and handgrip-strength values and lower severe ascites and encephalopathy incidences, interleukin (IL)-6/IL-10 ratios and C-reactive protein levels than did patients with PAs ≤ 4.9° (P ≤ 0.05). Forty-eight (35.80%) patients died due to cirrhosis, with a median of 18 mo (interquartile range, 3.3-25.6 mo) follow-up until death. Thirty-one (64.60%) of these patients were from the PA ≤ 4.9° group. PA ≤ 4.9° significantly and independently affected the mortality model adjusted for Model for End-Stage Liver Disease score and age (hazard ratio = 2.05, 95%CI: 1.11-3.77, P = 0.021). In addition, Kaplan-Meier curves showed that patients with PAs ≤ 4.9° were significantly more likely to die.

Conclusion: In male patients with cirrhosis, the PA ≤ 4.9° cutoff was associated independently with mortality and identified patients with worse metabolic, nutritional, and disease progression profiles. The PA may be a useful and reliable bedside tool to evaluate prognosis in cirrhosis.

Keywords: Bioelectrical impedance analysis; Body composition; Cirrhosis; Liver disease; Mortality; Nutritional assessment; Phase angle.