Spatio-temporal dynamics of a fish predator: Density-dependent and hydrographic effects on Baltic Sea cod population

PLoS One. 2017 Feb 16;12(2):e0172004. doi: 10.1371/journal.pone.0172004. eCollection 2017.

Abstract

Understanding the mechanisms of spatial population dynamics is crucial for the successful management of exploited species and ecosystems. However, the underlying mechanisms of spatial distribution are generally complex due to the concurrent forcing of both density-dependent species interactions and density-independent environmental factors. Despite the high economic value and central ecological importance of cod in the Baltic Sea, the drivers of its spatio-temporal population dynamics have not been analytically investigated so far. In this paper, we used an extensive trawl survey dataset in combination with environmental data to investigate the spatial dynamics of the distribution of the Eastern Baltic cod during the past three decades using Generalized Additive Models. The results showed that adult cod distribution was mainly affected by cod population size, and to a minor degree by small-scale hydrological factors and the extent of suitable reproductive areas. As population size decreases, the cod population concentrates to the southern part of the Baltic Sea, where the preferred more marine environment conditions are encountered. Using the fitted models, we predicted the Baltic cod distribution back to the 1970s and a temporal index of cod spatial occupation was developed. Our study will contribute to the management and conservation of this important resource and of the ecosystem where it occurs, by showing the forces shaping its spatial distribution and therefore the potential response of the population to future exploitation and environmental changes.

MeSH terms

  • Animals
  • Baltic States
  • Ecosystem*
  • Fishes / physiology*
  • Models, Theoretical*
  • Oceans and Seas
  • Population Density
  • Population Dynamics

Grants and funding

This work was financed by the BONUS INSPIRE project supported by the joint Baltic Sea research and development programme BONUS (Art 185), funded jointly by the EU and the Swedish Research Council Formas. This study was also funded by the PLAN FISH project funded by the Swedish Environmental Protection Agency and the Swedish Agency for Marine and Water Management (formerly the Swedish Board of Fisheries). The high-resolution, three-dimensional model simulation was performed within the project ECOSUPPORT (Advanced modeling tool for scenarios of the Baltic Sea ECOsystem to SUPPORT decision making) funded by the European Community's Seventh Framework Program (FP/2007-2013) under grant agreement no. 217246 made with BONUS, the joint Baltic Sea research and development program, and by the Swedish Environmental Protection Agency (08/381). Additional support came from the Swedish Research Council Formas within the project “Impact of accelerated future global mean sea level rise on the phosphorus cycle in the Baltic Sea”.