Previously thought of as a nonselective digestion process, autophagy is now known to specifically degrade aggregated proteins and damaged cellular organelles through the action of autophagy receptors, which provides cellular quality control and maintains homeostasis. Autophagy receptors recognize and recruit specific cargoes to the autophagosome-lysosome pathway for degradation in ubiquitin-dependent and -independent manners, and their functions (in selective autophagy) are regulated by protein modifications, for example, phosphorylation and ubiquitination. Growing evidence has linked the genetic variants of autophagy receptors to neurodegenerative diseases and multiple experimental systems have validated their roles in modulating the disease process. Here, we review the recent advances in understanding the physiology and pathophysiology of autophagy receptors in selective autophagy, and discuss their potentials as therapeutic targets for neurodegenerative diseases.
Copyright © 2017 Elsevier Ltd. All rights reserved.