The purpose of the present review is to describe how we improve the model for risk stratification of transplant outcomes in kidney transplantation by incorporating the novel insights of donor-specific anti-HLA antibody (DSA) characteristics. The detection of anti-HLA DSA is widely used for the assessment of pre- and posttransplant risks of rejection and allograft loss; however, not all anti-HLA DSA carry the same risk for transplant outcomes. These antibodies have been shown to cause a wide spectrum of effects on allografts, ranging from the absence of injury to indolent or full-blown acute antibody-mediated rejection. Consequently, the presence of circulating anti-HLA DSA does not provide a sufficient level of accuracy for the risk stratification of allograft outcomes. Enhancing the predictive performance of anti-HLA DSA is currently one of the most pressing unmet needs for facilitating individualized treatment choices that may improve outcomes. Recent advancements in the assessment of anti-HLA DSA properties, including their strength, complement-binding capacity, and IgG subclass composition, significantly improved the risk stratification model to predict allograft injury and failure. Although risk stratification based on anti-HLA DSA properties appears promising, further specific studies that address immunological risk stratification in large and unselected populations are required to define the benefits and cost-effectiveness of such comprehensive assessment prior to clinical implementation.